Improved StyleGAN2

What is StyleGAN2?

- A state-of-the-art Generative Adversarial Network
- Developed by researchers at NVIDIA
 - ProGAN -> StyleGAN -> StyleGAN2
 - Progressive growing (ProGAN)
 - Adaptive Instance Normalization: AdaIN (StyleGAN)
 - Weight demodulation (StyleGAN2)
- Diminishes artifacts/blobs in generations
 - Increasing resolution layers
 - Weight demodulation (normalization)
 - Improves speed

StyleGAN2 Improvements

- Restructures StyleGAN architecture
 - Replaces AdaIN, separates style blocks with noise maps, increases parallelization
 - Revised architecture ~40% faster, fewer artifacts

Competitive Architectures

- Skip connections
 - MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
 - Improves gradient passing between discriminator and generator
- Residual networks
 - Improved Training of Wasserstein GANs
 - Gradient penalty instead of weight clipping
 - Can train deep residual networks in GAN settings
- Hierarchical methods
 - StackGAN: Text to Photo-realistic Image Synthesis
 - Multiple GANs work together in a sketch-refinement process

StyleGAN2 Methodology

- Analyze StyleGAN limitations
 - Implement improvements
 - Compare architectures
- Datasets
 - FFHQ, 70k images, 1024x1024
 - LSUN Car, 893k images, 512x384
- Metrics
 - Frechet inception distance (FID)
 - Differences of distribution densities in feature space
 - Path length, precision, recall

StyleGAN2 Results

Configuration	FFHQ, 1024×1024				LSUN Car, 512×384			
Connguration	FID ↓	Path length \downarrow	Precision ↑	Recall ↑	$FID \downarrow$	Path length \downarrow	Precision ↑	Recall ↑
A Baseline StyleGAN [24]	4.40	212.1	0.721	0.399	3.27	1484.5	0.701	0.435
B + Weight demodulation	4.39	175.4	0.702	0.425	3.04	862.4	0.685	0.488
C + Lazy regularization	4.38	158.0	0.719	0.427	2.83	981.6	0.688	0.493
D + Path length regularization	4.34	122.5	0.715	0.418	3.43	651.2	0.697	0.452
E + No growing, new G & D arch.	3.31	124.5	0.705	0.449	3.19	471.2	0.690	0.454
F + Large networks (StyleGAN2)	2.84	145.0	0.689	0.492	2.32	415.5	0.678	0.514
Config A with large networks	3.98	199.2	0.716	0.422	777	1.7	7774	17771

- Path Length
 - estimates quality of latent space interpolations
- StyleGAN2 improves on all metrics except precision

Simulating StyleGAN2

- Original StyleGAN2 implementation is in TensorFlow
 - https://github.com/NVIabs/stylegan2
- Third-party Pytorch implementation:
 - <u>https://github.com/lucidrains/stylegan2-pytorch</u>
- Dataset
 - oxford_flowers102
 - 102 different flowers, 1,000 images, 128x128
 - Smaller sample size due to less computing power

Results

- Trained for 5,000 iterations
 - ~10 hours training time
 - Checkpoints every 1,000 iterations
 - Outputs show improving quality

3,000

4,000

_

StyleGAN2 More Details

- Has two main components:
 - Generator Generates artificial images based on input images
 - Discriminator classifies images
 - Classifies between "true" (real image) and "generated" (fake image)
- Both generator and discriminator use the Adam optimizer
- Generator has Ir of 2e-4
- Discriminator has Ir of 4e-4

Improving StyleGAN2

- StyleGAN2 implementations do not support 3D image data
- 3D generations important for:
 - Molecular and material design
 - Magnetic resonance imaging
 - CAD and modeling
- Requires
 - 3D convolutions, transposes, filters, kernels, strides
 - 3D upsampling, image channel adjustments

Improving StyleGAN2: Methodology

- Methodology is the exact same of StyleGAN2
 - With addition of 3D capabilities
- Same:
 - Base architecture structure
 - Style transfer capabilities
- Different:
 - Network parameters
 - Data channels
 - Image dimensionality

Code Adjustments

•••

l class LinearAttention(nn.Module):
<pre>2 definit(self, dim, dim_head=64, heads=8):</pre>
3 super()init()
<pre>5 self.to_q = nn.Conv2d(dim, inner_dim, 1, bias=False)</pre>
6 self.to ky = DepthWiseConv2d(dim, inner dim * 2, 3, padding=1, bias=False)
7 self.to out = nn.Conv2d(inner dim. dim. 1)
def forward(self fman).
14 attn and ff = lambda chan: nn.Sequential(*[
15 Residual(PreNorm(chan, LinearAttention(chan))).
16 Peridual (PreMorm (chan, nn Sequential (nn Convod (chan, chan \star 2, 1) leaky relu()
an Convert (chon * 2, chon , 1)))

•••

class D	epthWiseConv2d(nn.Module):
def	<pre>init(self, dim_in, dim_out, kernel_size, padding=0, stride=1, bias=True):</pre>
	<pre>super()init()</pre>
	<pre>self.net = nn.Sequential(</pre>
	nn.Conv2d(dim_in, dim_in, kernel_size=kernel_size, padding=padding, groups=dim_in, stride=stride, bias=bias),
	nn.Conv2d(dim_in, dim_out, kernel_size=1, bias=bias))
def	forward(self, x):
	return self.net(x)

•••

<pre>1 class LinearAttention(nn.Module):</pre>	
<pre>2 definit(self, dim, dim_head=64, heads=8):</pre>	
super()tntt()	1 cla:
self.to g = nn.Conv3d(dim. inner dim. kernel size=(1, 1, 1), bias=False)	2
6 self.to_kv = <u>DepthWiseConv3d</u> (dim, inner_dim * 2, 3, padding=1, bias=False)	3
<pre>7 self.to_out = nn.<u>Conv3d(</u>inner_dim, dim, kernel_size=(1, 1, 1))</pre>	- 4
8 0 def fam (and/calf fman).	
so del forward(sett, filiap):	5
12 # one layer of self-attention and feedforward, for images	6
13	7
14 attn and ff = lambda chan: nn.Sequential(*[/
15 Residual(PreNorm(chan, LinearAttention(chan))),	8
16 Residual(PreNorm(chan, nn.Sequential(nn. <u>Conv3d</u> (chan, chan * 2, 1), leaky_relu(),	9
nn. <u>Conv3d</u> (chan * 2, chan, 1))))])	

<pre>class DepthWiseConv3d(nn.Module): definit(self, dim_in, dim_out, kernel_size, padding=1, stride=1, bias=True):</pre>
<pre>super()init()</pre>
self.net = nn.Sequential(
nn.Conv3d(dim_in, dim_in, kernel_size=(3, 3, 3), padding=padding, groups=dim_in, stride=(1, 1, 1), bias=bias),
nn.Conv3d(dim_in, dim_out, kernel_size=(1, 1, 1), bias=bias))
<pre>def forward(self, x): return self.net(x)</pre>

Code Adjustments Cont.

Handles 'n' data channels instead of only 3 RGB channels

Experimental Setup

- Dataset
 - Synthetic 3D energy grids, 32x32x32
 - 2 channels:
 - 1st: Spherical
 - 2nd: Cubic
 - 7000 samples
- Trained for 2,000 iterations
 - ~8 hours
 - 3D data is slower
 - More information to process

Experimental Results

- Decreasing generator loss
- Learns both energy distributions over time
- Some additional noise in results
 - Possible causes: \bigcirc
 - low training iterations
 - Leftover noise from weight initializations

G:	8.23 D: 0.00 GP: 0.12
G:	48.25 D: 2.57 GP: 2234.1
G:	3.11 D: 0.57 GP: 0.14
G:	19.89 D: 0.02 GP: 0.16
G:	5.76 D: 2.23 GP: 334.03
G:	4.01 D: 1.60 GP: 8.12
G:	2.96 D: 0.28 GP: 1.68
G:	2.04 D: 0.81 GP: 1.25
G:	-0.94 D: 1.02 GP: 143.31
G:	13.75 D: 0.09 GP: 0.27
G:	5.13 D: 1.06 GP: 33.70
G:	-1.75 D: 7.01 GP: 8.39
G:	1.75 D: 0.47 GP: 1.32
G:	3.61 D: 0.03 GP: 0.37
G:	1.76 D: 3.31 GP: 0.50
G:	2.46 D: 0.35 GP: 0.22
G:	6.83 D: 0.05 GP: 0.15
G:	2.42 D: 0.20 GP: 4.22
G ·	0.89 D · 1.00 GP · 0.92

Simulation and Experimentation Discussion

- Able to reproduce original results
- 3D version of StyleGAN2 is available at:
 - <u>https://github.com/jbarks1234/improved-stylegan2</u>
- In the end, StyleGAN2 is a very useful and powerful GAN
 - Has uses in video games for auto generating cities or other models
 - Also used in auto generating voices
- We showed:
 - StyleGAN2's results can be reproduced on new datasets
 - StyleGAN2's architecture can be improved for 3D samples

References

• Prior Works:

https://www.qblocks.cloud/creators/synthesize-high-resolution-images-with-st ylegan2

• Flower Image Dataset:

https://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html

- Original StyleGAN: <u>https://github.com/lucidrains/stylegan2-pytorch/blob/master/stylegan2_pytorch</u> /stylegan2_pytorch.py
- Our improved StyleGAN2: <u>https://github.com/jbarks1234/improved-stylegan2</u>

Thank You! Any questions?